Búsqueda en el sitio por el término 'red neuronal'
-
11/06/2019
En otros artículos de este mismo blog ya he hablado de series temporales complejas, análisis de cuantificación de recurrencia (RQA) y redes neuronales. En esta serie de artículos voy a comentar algunas cuestiones a tener en cuenta al combinar el uso de estas dos herramientas para identificar patrones en series complejas, como por ejemplo detectar anomalías en electrocardiogramas o electroencefalogramas.
[Leer Mas...] -
18/03/2019
Con este artículo finalizo la serie dedicada a la aplicación de algoritmos genéticos al diseño de redes neuronales. Explicaré el código más relevante del programa de ejemplo que acompaña a estos artículos, principalmente las clases dedicadas al tratamiento de los genes y el proceso de selección. Podéis encontrar más información en los anteriores artículos de la serie.
[Leer Mas...] -
28/02/2019
En este segundo artículo sobre la aplicación de los algoritmos evolutivos a la optimización del diseño de redes neuronales, voy a proporcionar una pequeña aplicación de ejemplo que permite construir y entrenar redes, además de utilizar este tipo de algoritmos para buscar la mejor configuración para un determinado conjunto de datos. La aplicación permite generar datos artificiales de prueba, y también proporciono el código fuente para poder modificarla a voluntad.
[Leer Mas...] -
22/02/2019
Encontrar la topología más adecuada para la red neuronal que pretendemos aplicar a un determinado problema puede resultar un trabajo tedioso de prueba y error, además de acabar produciendo una red poco optimizada. Para automatizar este proceso podemos recurrir a los algoritmos evolutivos, inspirados en la selección natural de los organismos vivos, que nos pueden facilitar enormemente el trabajo.
[Leer Mas...] -
02/12/2018
Uno de los algoritmos más populares para el entrenamiento de redes neuronales artificiales multicapa es el algoritmo de propagación de errores hacia atrás, o algoritmo de retro propagación. En este artículo voy a tratar de explicar sus fundamentos, mediante una implementación simplificada de una red neuronal que permite realizar pruebas con diferentes configuraciones de la red.
[Leer Mas...] -
18/11/2016
En este artículo voy a mostrar la manera en que, mediante un mismo proceso muy sencillo y totalmente determinista, podemos pasar desde un sistema estacionario a otro completamente aleatorio, pasando por dinámicas periódicas y caóticas. Para ello, voy a generar varias series temporales con estas características utilizando el programa R y varios paquetes que nos pueden ayudar en el análisis de las mismas.
[Leer Mas...] -
02/10/2016
Las redes neuronales recurrentes constituyen una herramienta muy apropiada para modelar series temporales. Se trata de un tipo de redes con una arquitectura que implementa una cierta memoria y, por lo tanto, un sentido temporal. Esto se consigue implementando algunas neuronas que reciben como entrada la salida de una de las capas e inyectan su salida en una de las capas de un nivel anterior a ella. En este artículo voy a mostrar cómo utilizar de una forma sencilla dos redes neuronales de este tipo, las de Elman y las de Jordan, utilizando el programa R.
[Leer Mas...]